Separable coordinates for four-dimensional Riemannian spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauge Theories on Four Dimensional Riemannian Manifolds

This paper develops the Riemannian geometry of classical gauge theories Yang-Mills fields coupled with scalar and spinor fields on compact four-dimensional manifolds. Some important properties of these fields are derived from elliptic theory : regularity, an "energy gap theorem", the manifold structure of the configuration space, and a bound for the supremum of the field in terms of the energy....

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Four Dimensional Conformal C-spaces

We investigate the structure of conformal C-spaces, a class of Riemmanian man-ifolds which naturally arises as a conformal generalisation of the Einstein condition. A basic question is when such a structure is closed, or equivalently locally conformally Cotton. In dimension 4 we obtain a full answer to this question and also investigate the incidence of the Bach condition on this class of metri...

متن کامل

Perfect Images of Zero-dimensional Separable Metric Spaces

Let Q denote the rationals, P the irrationals, C the Cantor set and L the space C {p} (where p e C). Let / : X —> Y be a perfect continuous surjection. We show: (1) If X G { Q , P, QxP} , or if / is irreducible and Xe{C, L}, then Y is homeomorphic to X if Y is zero-dimensional. (2) If X G {P, C, L} and / is irreducible, then there is a dense subset S of Y such that / | /*~[S] is a homeomorphism...

متن کامل

The Existence of Generalized Isothermal Coordinates for Higher Dimensional Riemannian Manifolds

We shall show that, for any given point p on a Riemannian manifold (M, g0), there is a pointwise conformal metric g = -Dg0 in which the g-geodesic sphere centered at p with radius r has constant mean curvature 1 /r for all sufficiently small r . Furthermore, the exponential map of g at p is a measure preserving map in a small ball around p . INTRODUCTION This note is devoted to studying the mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1978

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf01611508